
DSC 140A - Homework 01
Due: Wednesday, April 10

Write your solutions to the following problems by either typing them up or handwriting them on another
piece of paper. Unless otherwise noted by the problem’s instructions, show your work or provide some
justification for your answer. Homeworks are due via Gradescope at 11:59 PM.

Problem 1.

In this problem, we’ll show that the gradient of f(~x) = ~xTA~x is 2A~x, where A is a symmetric n× n matrix
and ~x ∈ Rn. This is a useful result, but it’s also a good exercise for reviewing topics in matrix-vector algebra
and multivariate calculus.

a) To compute the gradient, we need to compute ∂f/∂x1, ∂f/∂x2, and so on. To do this, we’ll start by
expanding ~xTA~x until we see the coordinates of ~x.

Let the entries of A be 
a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
an1 an2 · · · ann

 .

Show that f(~x) = ~xTA~x =
∑n

i=1

∑n
j=1 aijxixj .

b) Show that:

∂f

∂xk

 n∑
i=1

n∑
j=1

aijxixj

 = 2
n∑

j=1

akjxj

In other words, show that ∂f/∂x1 is 2
∑n

j=1 a1jxj , ∂f/∂x2 is 2
∑n

j=1 a2jxj , and so on.

c) The gradient vector is the vector of partial derivatives:

(∂f/∂x1, ∂f/∂x2, . . . , ∂f/∂xn)
T

We have found so far that the gradient is:
2
∑

j=1 a1jxj

2
∑

j=1 a2jxj

...
2
∑

j=1 anjxj


Show that this is equal to 2A~x.

Hint: You can work backwards, expanding 2A~x and showing that it equals the gradient.

Solution: To compute the gradient, we follow the general strategy outlined in lecture of:

1. Expand until we see the components of ~x.

2. Compute the gradient vector of partial derivatives: (∂f/∂x1, ∂f/∂x2, . . .)
T

3. Try to rewrite the gradient in vector form.

1



Let the entries of A be 
a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
an1 an2 · · · ann

 .

In discussion, it was shown that

~xTA~x =

n∑
i=1

n∑
j=1

aijxixj .

It may help to visualize all of these terms in a table:

j = 1 j = 2 · · · j = n

i = 1 a11x
2
1 a12x1x2 · · · a1nx1xn

i = 2 a21x2x1 a22x
2
2 · · · a2nx2xn

...
...

...
. . .

...
i = n an1xnx1 an2xnx2 · · · annx

2
n

This table contains all of the terms in the double summation. If we added up all of the terms in this
table, we would get exactly ~xTA~x.

Next, we compute the gradient vector, starting with ∂f/∂x1. We have:

∂f/∂x1 =
∂

∂x1

n∑
i=1

n∑
j=1

aijxixj

=

n∑
i=1

n∑
j=1

∂

∂x1
aijxixj

If neither i or j are equal to one, the derivative will be zero. Which are not zero, and what are they?
This is where the table comes in handy. The partial of each entry with respect to x1 is:

j = 1 j = 2 · · · j = n

i = 1 2a11x1 a12x2 · · · a1nxn

i = 2 a21x2 0 · · · 0
...

...
...

. . .
...

i = n an1xn 0 · · · 0

Since A is symmetric, a12 = a21, a13 = a31, etc. Gathering like terms, we find:

= 2a11x1 + 2a12x2 + . . .+ 2a1nxn

= 2

n∑
j=1

a1jxj

We can guess that, in general, ∂f/∂xi = 2
∑n

j=1 aijxj . Therefore, the gradient vector is:

df

d~x
=


2
∑

j=1 a1jxj

2
∑

j=1 a2jxj

...
2
∑

j=1 anjxj



2



To show that this equals 2A~x, we can work backwards by expanding 2A~x. We have:

2A~x = 2


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
an1 an2 · · · ann



x1

x2

...
xn



= 2


∑n

j=1 a1jxj∑n
j=1 a2jxj

...∑n
j=1 anjxj



=


2
∑n

j=1 a1jxj

2
∑n

j=1 a2jxj

...
2
∑n

j=1 anjxj


=

df

d~x

Problem 2.

The following is a common question you might see in an interview for a machine learning job. The question
is: Should you scale your features before performing least squares?

Your friend thinks that scaling the features before performing least squares regression is a good idea. Their
logic is that scaling sometimes improves the performance of k-nearest neighbors predictors, so it might help
with least squares as well. But you’re not so sure.

In this problem, we’ll show that scaling the features before performing least squares regression does not
actually change the predictions that are made, and so it doesn’t improve the performance of the model1.

Hint: It might be helpful to use some of the matrix-vector algebra properties covered in discussion. If you
use a property that wasn’t listed in discussion or lecture, it’s OK, but make sure to explicitly state the
property you’re using.

a) Let (~x(1), y1), (~x
(2), y2), . . . , (~x

(n), yn) be a training set of n feature vectors in Rd and their correspond-
ing labels. Recall that the decision matrix X is

X =


1 ~x

(1)
1 ~x

(1)
2 · · · ~x

(1)
d

1 ~x
(2)
1 ~x

(2)
2 · · · ~x

(2)
d

...
...

...
. . .

...
1 ~x

(n)
1 ~x

(n)
2 · · · ~x

(n)
d


Suppose we will scale feature i by a constant factor of ci in each feature vector. The result is a scaled
data set whose design matrix XC is:

XC =


1 c1~x

(1)
1 c2~x

(1)
2 · · · cd~x

(1)
d

1 c1~x
(2)
1 c2~x

(2)
2 · · · cd~x

(2)
d

...
...

...
. . .

...
1 c1~x

(n)
1 c2~x

(n)
2 · · · cd~x

(n)
d


Find a diagonal matrix C so that XC = XC.

1This is not to say that scaling is never useful when doing least squares regression. Scaling the features can make the weights
easier to interpret, for example, or help with numerical stability.

3



Solution: We can find what the diagonal matrix C should be by writing out the matrix multi-
plication XC and comparing it to XC .

First, how big should C be? Since X is n × (d + 1), we need C to be (d + 1) × (d + 1) so that
XC is also n× (d+ 1).

Let’s say that C is the diagonal matrix:

C =


a0 0 0 · · · 0
0 a1 0 · · · 0
0 0 a2 · · · 0
...

...
...

. . .
...

0 0 0 · · · ad


We’re trying to find out what the ai should be.

When we multiply XC, we get:

XC =


1 ~x

(1)
1 ~x

(1)
2 · · · ~x

(1)
d

1 ~x
(2)
1 ~x

(2)
2 · · · ~x

(2)
d

...
...

...
. . .

...
1 ~x

(n)
1 ~x

(n)
2 · · · ~x

(n)
d



a0 0 0 · · · 0
0 a1 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · ad



=


a0 + a1~x

(1)
1 + a2~x

(1)
2 + · · ·+ ad~x

(1)
d

a0 + a1~x
(2)
1 + a2~x

(2)
2 + · · ·+ ad~x

(2)
d

...
a0 + a1~x

(n)
1 + a2~x

(n)
2 + · · ·+ ad~x

(n)
d


Since we want this to equal XC , we compare term by term and find that we should set:

a0 = 1

a1 = c1

a2 = c2

...
ad = cd

Therefore, the matrix C is: 
1 0 0 · · · 0
0 c1 0 · · · 0
0 0 c2 · · · 0
...

...
...

. . .
...

0 0 0 · · · cd



b) For the unscaled data, the optimal parameter vector is given by ~w∗ = (XTX)−1XT~y. When we scale
the features, however, the optimal weight vector becomes ~w∗

C = (XT
CXC)

−1XT
C~y.

Show that ~w∗
C = C−1 ~w∗ by using the fact that XC = XC.

Hint: (AB)−1 = B−1A−1 (as long as A and B are invertible).

4



Solution: We know that XC = XC, so we can write:

~w∗
C = (XT

CXC)
−1XT

C~y

= (CXTXC)−1CXT~y

Now we can use the fact that (AB)−1 = B−1A−1, as long as A and B are invertible, but we
have to be careful! XT and X are not invertible (they aren’t square matrices), but XTX is
square (and, presumably, invertible). C is also invertible. So, iteratively applying the fact, we
get (CXTXC)−1 = C−1(XTX)−1

(
CT

)−1, and we get:

= C−1(XTX)−1
(
CT

)−1
CXT~y

Since C is diagonal, CT = C, so we can simplify:

= C−1(XTX)−1C−1CXT~y

= C−1 (XTX)−1XT~y︸ ︷︷ ︸
~w∗

= C−1 ~w∗

c) Consider a new point ~x for which we want to make a prediction.

The prediction made by the original model is ~w∗ ·Aug(~x).

The prediction made by the new model trained on scaled data is ~w∗
C ·Aug(~xC), where ~xC is ~x scaled

by the same factors as the training data. It can be shown that Aug(~xC) = C Aug(~x).

Using these facts and the result of the previous parts, show that ~w∗ ·Aug(~x) = ~w∗
C ·Aug(~xC); that is,

both models make exactly the same prediction, and scaling had no effect.

Hint: The inverse of a diagonal matrix is also diagonal. The transpose of a diagonal matrix is the
same as the original matrix.

Solution: Since w∗
C = C−1w∗ and Aug(~xC) = C Aug(~x), we have:

~w∗
C ·Aug(~xC) = C−1 ~w∗ · C Aug(~x)

We want to somehow “cancel” the C and C−1 terms, which means getting them next to one
another. For this, we can use the fact that ~a ·~b = ~aT~b for vectors ~a and ~b to write:

=
(
C−1 ~w∗)T (C Aug(~x))

= (~w∗)T (C−1)TC Aug(~x)

Because C is diagonal, (C−1)T = (CT )−1 = C−1, so we can simplify:

= (~w∗)TC−1C Aug(~x)

= (~w∗)T Aug(~x)

= ~w∗ ·Aug(~x)

Problem 3.

In this problem, you’ll implement a k-nearest neighbor classifier and use it to predict whether an image of

5



a handwritten digit (like the one shown below) is either a 3 or a 7.

2

Along the way, you’ll see some of the common technical issues that might come with using a machine learning
algorithm and how to fix them.

The file linked below is a subset of the MNIST dataset, which contains images of handwritten digits. It is
provided in npz format, which is a compressed file format that can store multiple arrays; it can be read using
the numpy library’s np.load function.

https://f000.backblazeb2.com/file/jeldridge-data/014-mnist37/mnist.npz

When loaded it behaves like a Python dictionary with the following keys:

• train: A 784 by 12,396 array containing the training images. Each column represents one training
image that has been “flattened” into a 784-dimensional vector (784 dimensional because the original
images are 28 by 28 pixels, and 28 times 28 is 784).

• train_labels: An array of 12,396 entries containing the labels for the training images. Each entry is
either a 3 or a 7.

• test: A 784 by 2,038 array containing the test images. Each column represents one test image that
has been flattened into a 784-dimensional vector.

• test_labels: An array of 2,038 entries containing the labels for the test images. Each entry is either
a 3 or a 7.

In lecture, code was given for a function knn_predict that implemented a k-nearest neighbor classifier.
You’re encouraged to use that code for this problem, but if you simply plug in the training and test data,
you’ll find that the classifier doesn’t work as expected. There isn’t a bug in the code; rather, the issue is
that the input is not in a form that the code expects. In that sense, this problem is meant to be practice
for how to manage these small technical issues (since you will likely encounter them at some point, either in
this class or in your career).

Some errors you might get are:

• “ValueError: operands could not be broadcast together with shapes …”: this error occurs when you
try to add or subtract two arrays of different shapes. Check: does the knn_train function expect the
training data to be in a n× d matrix, or a d× n matrix? What are you providing it with?

• “TypeError: Cannot cast array data from dtype(’float64’) to dtype(’int64’)...”: This error is probably
being raised by np.bincount. It wants an array of integers. Is that what you’re giving it? You might
want to use the .astype() method to convert an array to a different data type.

After fixing these errors, your code should run – but we’re not done just yet. Compute the accuracy of
your classifier on the first 100 test examples using k = 1 neighbors. You will likely see something like 81%
accuracy. This might sound good, but it’s actually much less than it should be.

2If you’d like to plot the handwritten digits (for fun), you can use plt.imshow(x.reshape(28, 28)) from the matplotlib
library, where x is a 784-dimensional vector.

6

https://f000.backblazeb2.com/file/jeldridge-data/014-mnist37/mnist.npz


The issue is that the training images are all encoded as 8-bit “unsigned integers” (or uint8, in numpy’s
language), and an 8-bit unsigned integer can only store values from 0 to 255. If you subtract two 8 bit
integers (as we do when we compute the distance between two images), the result might be a negative
number mathematically, but the computer will not be able to store the result as a negative number in an
8-bit unsigned integer. Instead, it will “wrap around” and store the result as a positive number. This means
that the distance between two images is not what you’d expect. For example, if you compute:

>>> x = np.array([1, 2, 3], dtype=np.uint8)
>>> y = np.array([4, 5, 6], dtype=np.uint8)
>>> x - y

you expect to get array([-3, -3, -3]), but you actually get array([253, 253, 253], dtype=uint8).

To fix this, you should convert the training and test images to a data type that can represent negative
numbers as large as needed. np.int16 should be enough, since it can represent numbers from −32,768 to
32,767.

After fixing all of these, you should have a classifier that gets very close to 100% accuracy on the first 100
test examples. Hint: you should not need to change the code of knn_predict at all; you just need to change
its inputs.

What you should turn in for this problem:

• the final accuracy of the k = 1 nearest neighbor classifier on the first 100 test examples after fixing the
data type issue.

• The predictions your classifier makes on the 0th, 500th, and 1000th test examples. E.g.,: 7, 7, 7 if the
classifier predicts 7 for all three examples (which it shouldn’t!)

• A short list of the changes you had to make to get these results.

• Your code, either as a screenshot or pasted into the document.

Solution: There are several things we need to do with the data to get the expected result.

First, we need to transpose the training and test data. The knn_train function wants a parameter,
X_train, containing all of the training data. There are two conventions about how to store the data
in an array: either each row is a data point, or each column is a data point. The knn_train function
expects the former, but the data is actually stored in the latter format. We can fix this by transposing
the data. Assuming we’ve already loaded the data with: data = np.load('mnist.npz'), we can do
this with X_train = data['train'].T.

We also need to note that the knn_predict function expects an argument, x, which is a single test data
point to make a prediction for. If you try passing in the entire test data set, you’ll get an error. Instead,
you should loop over the test data and make predictions one by one.

Next, we need to fix the data type. np.uint8 cannot represent negative numbers, so we should convert
the data to a signed type, like np.int16. We can do this with data['train'].astype(np.int16).

After this, your predictions on the 0th, 500th, and 1000th test examples should all be “3”, and you
should achieve exactly 98% accuracy on the first 100 test examples.

Problem 4.

The file at the link below contains a simple data set suitable for regression.

https://f000.backblazeb2.com/file/jeldridge-data/002-regression_outlier/data.csv

The first column contains the x values (the predictor variable) and the second column contais the y values
(the target).

7

https://f000.backblazeb2.com/file/jeldridge-data/002-regression_outlier/data.csv


The plot below shows the data:

0 1 2 3 4 5
x

40

20

0

20

40

60

80

100

y

Notably, the data contains outliers which may affect our regression.

Fit a linear function of the form w0 + w1x by minimizing the mean squared error. Report w0 and w1, and
include your code.

Do not use sklearn, scipy, or any library except for numpy and matplotlib for this problem. You may use
the code given in lecture for least squares regression.

Solution:

# load the data
X, y = np.loadtxt('./data.csv', delimiter=',').T

# make an augmented design matrix by adding a column of ones
# to X
X_aug = np.column_stack((

np.ones_like(X), X
))

# fit by minimizing squared error
w_sq = np.linalg.lstsq(X_aug, y)[0]

We find, approximately: w0 ≈ 11.26 and w1 ≈ 0.18.

8


