DSC 140A - Discussion 04

Problem 1.

Using the definition, show that the function $f(\vec{w})=a \vec{x} \cdot \vec{w}-b$ is convex as a function of \vec{w}, where $a, b \in \mathbb{R}$ and $\vec{x}, \vec{w} \in \mathbb{R}^{d}$.

Problem 2.

Let $f_{1}(\vec{w})$ and $f_{2}(\vec{w})$ be convex functions from \mathbb{R}^{d} to \mathbb{R}. Define

$$
f(\vec{w})=\max \left\{f_{1}(\vec{w}), f_{2}(\vec{w})\right\}
$$

Show that $f(\vec{w})$ is convex.

Problem 3.

Recall that the Perceptron loss is:

$$
L_{\text {perc }}(\vec{w}, \vec{x}, y)= \begin{cases}0, & \text { if } \operatorname{sign}(\vec{w} \cdot \vec{x})=y \text { (correctly classified) } \\ |\vec{w} \cdot \vec{x}|, & \text { if } \operatorname{sign}(\vec{w} \cdot \vec{x}) \neq y \text { (misclassified) }\end{cases}
$$

Using the trick that $-y \vec{w} \cdot \vec{x}=|\vec{w} \cdot \vec{x}|$ in the case of misclassification, this can be be written in the equivalent form:

$$
L_{\text {perc }}(\vec{w}, \vec{x}, y)=\max \{0,-y \vec{w} \cdot \vec{x}\}
$$

Argue that the perceptron loss is convex as a function of \vec{w}.

