$$
\text { DSC } 140 A
$$

Math for Machine Learning

- DSC 140A is a course in machine learning.
- In ML, we often turn the problem of learning into a math problem.
- So, to deeply understand an ML algorithm, you need to understand the math behind it.

Math Prerequisites

- MATH 20A-B-C: Multivariate Calculus
- Especially the gradient!
- MATH 18: Linear Algebra
- MATH 183: Probability / Statistics
- DSC 40A: Mathematical Foundations of ML

This Discussion

- We'll review some of the math we'll need in the first part of the course.
- It's OK to not remember everything!
- But you may want to do some review on your own.

Facts

We'll highlight some important facts throughout this discussion with a box like this:

Fact \#1

This is a fact.

$$
D S C 140 A
$$

Summation Notation

- We use summation notation a lot in data science.
- If $x_{1}, x_{2}, \ldots, x_{n}$ are numbers (or vectors), then:

$$
\sum_{i=1}^{n} x_{i}=x_{1}+x_{2}+\ldots+x_{n}
$$

Exercise

True or False: constant factors can be pulled out of a summation. That is, if a is a constant (indepedent of i), then:

$$
\sum_{i=1}^{n} a x_{i}=a \sum_{i=1}^{n} x_{i}
$$

True!

Fact \#2 Constant Factors in a Summation

Constants can be pulled out of a summation. That is, if a is a constant (independent of i), then:

$$
\sum_{i=1}^{n} a x_{i}=a \sum_{i=1}^{n} x_{i}
$$

How do we know?

- Try expanding the sum using ... notation:

$$
\begin{aligned}
\sum_{i=1}^{n} a x_{i} & =a x_{1}+a x_{2}+\ldots+a x_{n} \\
& =a\left(x_{1}+x_{2}+\ldots+x_{n}\right) \\
& =a \sum_{i=1}^{n} x_{i}
\end{aligned}
$$

Exercise

True or False: we can "split" a summation. That is:

$$
\sum_{i=1}^{n}\left(x_{i}+y_{i}\right)=\sum_{i=1}^{n} x_{i}+\sum_{i=1}^{n} y_{i}
$$

True!

Fact \#3 Splitting a Summation

We can "split" a summation. That is:

$$
\sum_{i=1}^{n}\left(x_{i}+y_{i}\right)=\sum_{i=1}^{n} x_{i}+\sum_{i=1}^{n} y_{i}
$$

Exercise

How should we interpret $\sum_{i=1}^{n} x_{i}+y_{i}$

$$
\sum_{i=1}^{n}\left(x_{i}+y_{i}\right) \quad \text { or } \quad\left(\sum_{i=1}^{n} x_{i}\right)+y_{i}
$$

Answer

- It has to mean $\sum_{i=1}^{n}\left(x_{i}+y_{i}\right)$, because $\left(\sum_{i=1}^{n} x_{i}\right)+y_{i}$ does not make notational sense!
- i is "unbound", so y_{i} is not defined!
DSC IHOA

Vectors

- A vector \vec{x} is a list of numbers.
- The dimensionality of the vector is the number of entries it has.
- Example: a 3-vector:

$$
\vec{x}=\left(\begin{array}{c}
8 \\
-2 \\
3
\end{array}\right)
$$

Vector Notation

\Rightarrow We write $x \in \mathbb{R}^{d}$, to denote that \vec{x} is a d-dimensional vector whose entries are real numbers. ${ }^{12}$

- Pronounced " x is in R-d".

[^0]
Vector Notation

- We use subscripts to denote particular elements of a vector.
\Rightarrow Example: x_{1} is the first element of \vec{x}, x_{2} is the section element, etc.

Points vs. Arrows

- We often think of vectors as points in space. Example: $\overrightarrow{\mathrm{x}}=(3,2)^{\top}$

Vector Notation

- We'll often be working with sets of vectors.
- We'll use a superscript to denote the ith vector in the set.
- $\vec{x}^{(1)}$ is the first vector in the set, $\vec{x}^{(2)}$ is the second, etc.

Points vs. Arrows

We can also think of vectors as arrows. Example: $\vec{x}=(3,2)^{\top}$

Vector Norm (Length)

- The norm (length) of a vector \vec{x}, written $\|\vec{x}\|$, is the Euclidean distance from the origin to the point represented by \vec{x} :

$$
\begin{aligned}
\|\vec{x}\| & =\sqrt{x_{1}^{2}+x_{2}^{2}+\ldots+x_{d}^{2}} \\
& =\sqrt{\sum_{i=1}^{0} x_{i}^{2}}
\end{aligned}
$$

Vector Addition

- Two vectors \vec{x} and \vec{y} can be added together.
- The result is a vectors whose entries are the elementwise sum of the two vectors.
- Example:

$$
\underbrace{\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)}_{\tilde{x}}+\underbrace{\left(\begin{array}{l}
4 \\
5 \\
6
\end{array}\right)}_{\vec{y}}=\left(\begin{array}{l}
1+4 \\
2+5 \\
3+6
\end{array}\right)=\underbrace{\left(\begin{array}{l}
5 \\
7 \\
9
\end{array}\right)}_{\vec{x}+\vec{y}}
$$

Fact \#4 Vector Addition

Adding (or subtracting) $\vec{\delta}$ to \vec{x} "shifts" \vec{x}. For example, using $\vec{\delta}=(1,2)^{\top}$:

Scalar Multiplication

- We can multiply a vector by a scalar, c.
- The result is a vector whose entries are the original entries multiplied by c.
- Example:

$$
3\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)=\left(\begin{array}{l}
3 \cdot 1 \\
3 \cdot 2 \\
3 \cdot 3
\end{array}\right)=\left(\begin{array}{l}
3 \\
6 \\
9
\end{array}\right)
$$

Fact \#5 Scalar Multiplication of a Vector

Multiplying \vec{x} by c "stretches" \vec{x} by a factor of c. For example, using $c=2$:

Vector Products

- We can "multiply" two vectors together using the dot product.

Fact \#6 Dot Product (Coordinate Defini-

 tion)The dot product of two d-vectors \vec{u} and \vec{v} is defined to be:

$$
\begin{aligned}
\vec{u} \cdot \vec{v} & =u_{1} v_{1}+u_{2} v_{2}+\ldots+u_{d} v_{d} \\
& =\sum_{i=1}^{d} u_{i} v_{i}
\end{aligned}
$$

Exercise

Let $\vec{u}=(1,2,3)^{\top}$ and $\vec{v}=(4,5,6)^{\top}$. What is $\vec{u} \cdot \vec{v}$?

Dot Product

The dot product has a geometric interpretation, too.

Fact \#7 Dot Product (Geometric Definition)

The dot product of two vectors \vec{u} and \vec{v} is:

$$
\vec{u} \cdot \vec{v}=\|\vec{u}\|\|\vec{v}\| \cos \theta
$$

where θ is the angle between the two vectors.

Exercise

Suppose $\vec{v}=(3,3)^{T}$.

1. Find a unit vector $\vec{u}^{(1)}$ such that $\vec{u}^{(1)} \cdot \vec{v}=0$.
2. Find a unit vector $\vec{u}^{(2)}$ such that $\left|\vec{u}^{(2)} \cdot \vec{v}\right|$ is maximized.

Exercise

Which of these is another expression for the norm of \vec{u} ?
a) $\vec{u} \cdot \vec{u}$
b) $\sqrt{\vec{u}^{2}}$
c) $\sqrt{\vec{u} \cdot \vec{u}}$
d) \vec{u}^{2}

Fact \#8 Properties of the Dot Product

The dot product is:

- Commutative: $\vec{u} \cdot \vec{v}=\vec{v} \cdot \vec{u}$
- Distributive: $\vec{u} \cdot(\vec{v}+\vec{w})=\vec{u} \cdot \vec{v}+\vec{u} \cdot \vec{w}$
- Linear: $\vec{u} \cdot(\alpha \vec{v}+\beta \vec{w})=\alpha \vec{u} \cdot v+\beta \vec{u} \cdot \vec{w}$

$$
\text { DSC } 140 A
$$

Matrices

Matrices

An $m \times n$ matrix is a table of numbers with m rows, n columns:

- Example: 2×3 matrix:

$$
\left(\begin{array}{lll}
m_{11} & m_{12} & m_{13} \\
m_{21} & m_{22} & m_{23}
\end{array}\right)
$$

Matrices

An $m \times n$ matrix is a table of numbers with m rows, n columns:

- Example: 3×3 "square" matrix:

$$
\left(\begin{array}{lll}
m_{11} & m_{12} & m_{13} \\
m_{21} & m_{22} & m_{23} \\
m_{31} & m_{32} & m_{33}
\end{array}\right)
$$

Matrices

An $m \times n$ matrix is a table of numbers with m rows, n columns:

- Example: 3×1, a.k.a. a "column vector":

$$
\left(\begin{array}{l}
m_{11} \\
m_{21} \\
m_{31}
\end{array}\right)
$$

Matrix Notation

- We use upper-case letters for matrices.

$$
A=\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right)
$$

- Sometimes use subscripts to denote particular elements: $A_{13}=3, A_{21}=4$

Matrix Transpose

- A^{T} denotes the transpose of A :

$$
A=\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right) \quad A^{T}=\left(\begin{array}{ll}
1 & 4 \\
2 & 5 \\
3 & 6
\end{array}\right)
$$

Matrix Addition and Scalar Multiplication

- We can add two matrices...
- But only if they are the same shape!
- Addition occurs elementwise:

$$
\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right)+\left(\begin{array}{ccc}
7 & 8 & 9 \\
-1 & -2 & -3
\end{array}\right)=\left(\begin{array}{ccc}
8 & 10 & 12 \\
3 & 3 & 3
\end{array}\right)
$$

Scalar Multiplication

- Scalar multiplication occurs elementwise, too:

$$
2 \cdot\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right)=\left(\begin{array}{ccc}
2 & 4 & 6 \\
8 & 10 & 12
\end{array}\right)
$$

Matrix-Vector Multiplication

- We can multiply an $m \times n$ matrix A by an n-vector $\vec{x} .$.
- Note that the number of columns in A must equal the number of entries in \vec{x} !
- The result is an m-vector.

Fact \#9 Matrix-Vector Mult., View 1

Let A be an $m \times n$ matrix and \vec{x} be an n-vector.
The ith entry of $A \vec{x}$ can be found by dotting the ith row of A with \vec{x}.

Example

$$
\begin{gathered}
A=\left(\begin{array}{lll}
1 & 2 & 1 \\
3 & 4 & 5
\end{array}\right) \quad \vec{x}=\left(\begin{array}{l}
3 \\
2 \\
1
\end{array}\right) \\
(A \vec{x})_{1}=\left(\begin{array}{l}
1 \\
2 \\
1
\end{array}\right) \cdot\left(\begin{array}{l}
3 \\
2 \\
1
\end{array}\right)=3+4+1=8 \\
(A \vec{x})_{2}=\left(\begin{array}{l}
3 \\
4 \\
5
\end{array}\right) \cdot\left(\begin{array}{l}
3 \\
2 \\
1
\end{array}\right)=9+8+5=22 \\
A \vec{x}=(8,22)^{\top}
\end{gathered}
$$

Fact \#10 Matrix-Vector Mult., View 2

Let A be an $m \times n$ matrix and $\vec{x}=\left(x_{1}, \ldots, x_{n}\right)$ be an n-vector.
$A \vec{x}$ equals:

- x_{1} times the first column of A, plus
- x_{2} times the second column of A, plus
..., plus
> x_{n} times the nth column of A.

Example

$$
\begin{aligned}
A & =\left(\begin{array}{lll}
1 & 2 & 1 \\
3 & 4 & 5
\end{array}\right) \quad \vec{x}=\left(\begin{array}{l}
3 \\
2 \\
1
\end{array}\right) \\
A \vec{x} & =3\binom{1}{3}+2\binom{2}{4}+1\binom{1}{5} \\
& =\binom{3}{9}+\binom{4}{8}+\binom{1}{5} \\
& =\binom{8}{22}
\end{aligned}
$$

Fact \#11 Matrix-Vector Mult., View 3

Let A be an $m \times n$ matrix and \vec{x} be an n-vector. The ith entry of $A \vec{x}$ is given by:

$$
\sum_{j=1}^{n} A_{i j} x_{j}
$$

Matrix-Matrix Multiplication

- We can multiply two matrices A and B if (and only if) \# cols in A is equal to \# rows in B
- If $A=m \times n$ and $B=n \times p$, the result is $m \times p$.
- This is very useful. Remember it!

Fact \#12 Matrix-Matrix Mult., View 1

Let A be an $m \times n$ matrix and B be an $n \times p$ matrix.
The (i, j)th entry of $A B$ is given by dotting the i th row of A with the j th column of B.

Fact \#13 Matrix-Matrix Mult., View 2

Let A be an $m \times n$ matrix and B be an $n \times p$ matrix. The (i, j)th entry of $A B$ is given by:

$$
\sum_{k=1}^{n} A_{i k} B_{k j}
$$

Matrix-Matrix Multiplication Example

$$
A=\left(\begin{array}{lll}
1 & 2 & 1 \\
3 & 4 & 5
\end{array}\right) \quad B=\left(\begin{array}{ll}
3 & 6 \\
1 & 3 \\
4 & 8
\end{array}\right)
$$

- What is the size of $A B$?
\Rightarrow What is $(A B)_{12}$?

Fact \#14 Matrix Multiplication Properties

Matrix multiplication is:
\Rightarrow Distributive: $A(B+C)=A B+A C$
\Rightarrow Associative: $(A B) C=A(B C)$
$>$ Not commutative in general: $A B \neq B A$

Fact \#15 $\vec{u} \cdot \vec{v}$ as Matrix Multiplication

An n-vector can be thought of an an ($n \times 1$) matrix. So the dot product of two n-vectors \vec{u} and \vec{v} is the same as the matrix multiplication $\vec{u}^{\top} \vec{v}$.

Identity Matrices

- The $n \times n$ identity matrix I has ones along the diagonal:

$$
\left(\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
\vdots & \vdots & & \vdots \\
0 & 0 & \cdots & 1
\end{array}\right)
$$

\Rightarrow If A is $n \times m$, then $I A=A$.
\Rightarrow If B is $m \times n$, then $B I=B$.

Systems of Linear Equations

- We often want to solve $A \vec{x}=\vec{b}$ for \vec{x}.
- There are three possible situations:

1. There's no solution.
2. There's exactly one solution.
3. There are infinitely many solutions.

Solving Systems

- If A is $n \times n$, then it might have an inverse.
- The inverse of A, denoted A^{-1}, is the matrix such that $A A^{-1}=I$.
- The inverse, if it exists, is also $n \times n$.

Fact \#16 Matrix Inverse

Suppose A is $n \times n$, and we want to solve $A \vec{x}=\vec{b}$ for \vec{x}.

If A is invertible (has an inverse), then there is a unique solution: $\vec{x}=A^{-1} \vec{b}$.

If A is not invertible then there is either no solution or infinitely many solutions.

Matrix Inverse

- You don't know how to compute matrix inverses by hand for this class.
- But you do need to know these properties.
DSC IHOA

Debugging for ML

- In this class, you'll find yourself doing some long calculations with matrices and vectors.
- It's easy to get lost in the weeds.
- It is helpful to frequently stop and ask yourself:

1. "What kind of object should this be? A scalar, vector, or matrix?"
2. "What type of object is it actually?"

- This can help you debug your ML code, too!

What kind of object?

- To answer this, remember:
\rightarrow scalar \times vector \rightarrow vector
$>$ vector + vector \rightarrow vector
\Rightarrow matrix + matrix \rightarrow matrix
$>$ vector \cdot vector (dot product) \rightarrow scalar
\rightarrow vector norm \rightarrow scalar
$>(m \times n)$ matrix $\times n$-vector $\rightarrow m$-vector
$\Rightarrow(m \times n)$ matrix $\times(n \times p)$ matrix $\rightarrow(m \times p)$ matrix - ...

Watch out for...

- The following are not mathematically valid. Make sure your calculations don't lead to these:
- vector + scalar
- matrix + scalar
\Rightarrow matrix + vector
$>(m \times n)$ matrix $\times(p \times q)$ matrix, with $n \neq p$

Example

Let $\vec{x}^{(1)}, \ldots, \vec{x}^{(n)}$ be d-dimensional vectors, and \vec{w} be a d-dimensional vector. Let y_{1}, \ldots, y_{n} be scalars.

What type of object is

$$
\frac{1}{n} \sum_{i=1}^{n}\left(\vec{x}_{i} \cdot \vec{w}-y_{i}\right)^{2}
$$

Example

Let $\vec{x}^{(1)}, \ldots, \vec{x}^{(n)}$ be d-dimensional vectors, and \vec{w} be a d-dimensional vector. Let y_{1}, \ldots, y_{n} be scalars.

What type of object is

$$
\frac{1}{n} \sum_{i=1}^{n}=\frac{\left.\vec{x}_{i} \cdot \vec{w}-y_{i}\right)^{2}, ~}{\text { scalar }}
$$

Example

Let $\vec{x}^{(1)}, \ldots, \vec{x}^{(n)}$ be d-dimensional vectors, and \vec{w} be a d-dimensional vector. Let y_{1}, \ldots, y_{n} be scalars.

What type of object is

$$
\frac{1}{n} \sum_{i=1}^{n}(\underbrace{\vec{x}_{i} \cdot \vec{w}-y_{i}}_{\text {scalar }})^{2}
$$

Example

Let $\vec{x}^{(1)}, \ldots, \vec{x}^{(n)}$ be d-dimensional vectors, and \vec{w} be a d-dimensional vector. Let y_{1}, \ldots, y_{n} be scalars.

What type of object is

$$
\frac{1}{n} \sum_{i=1}^{n} \underbrace{\left(\vec{x}_{i} \cdot \vec{w}-y_{i}\right)^{2}}_{\text {scalar }}
$$

Example

Let $\vec{x}^{(1)}, \ldots, \vec{x}^{(n)}$ be d-dimensional vectors, and \vec{w} be a d-dimensional vector. Let y_{1}, \ldots, y_{n} be scalars.

What type of object is

$$
\frac{1}{n} \underbrace{\sum_{i=1}^{n}\left(\vec{x}_{i} \cdot \vec{w}-y_{i}\right)^{2}}_{\text {scalar }}
$$

Example

Let $\vec{x}^{(1)}, \ldots, \vec{x}^{(n)}$ be d-dimensional vectors, and \vec{w} be a d-dimensional vector. Let y_{1}, \ldots, y_{n} be scalars.

What type of object is

$$
\underbrace{\frac{1}{n} \sum_{i=1}^{n}\left(\vec{x}_{i} \cdot \vec{w}-y_{i}\right)^{2}}_{\text {scalar }}
$$

Exercise

Let $\vec{x} \in \mathbb{R}^{d}$ and let A be a $d \times d$ matrix. What type of object is $\vec{x}^{\top} A \vec{x}$?

Exercise

Let $\vec{x} \in \mathbb{R}^{d}$ and let A be a $d \times d$ matrix. What type of object is $\vec{x}^{\top} A \vec{x}$?

Answer: A scalar.

Exercise

Let $\vec{x}^{(1)}, \ldots, \vec{x}^{(n)}$ be d-dimensional vectors. What type of object is:

$$
\frac{1}{n} \sum_{i=1}^{n} \vec{x}^{(i)}\left(\vec{x}^{(i)}\right)^{T}
$$

Exercise

Let $\vec{x}^{(1)}, \ldots, \vec{x}^{(n)}$ be d-dimensional vectors. What type of object is:

$$
\frac{1}{n} \sum_{i=1}^{n} \vec{x}^{(i)}\left(\vec{x}^{(i)}\right)^{\top}
$$

Answer: $\mathrm{Ad} \times d$ matrix.

[^0]: ${ }^{1} \mathbb{R}$ is the symbol for the set of real numbers.
 ${ }^{2}$ In $\mathbb{L T}_{\mathrm{E}} \mathrm{X}$, you can write $\backslash \operatorname{vec}\{\mathrm{x}\}$ \in\mathbb $\mathrm{R}^{\wedge} \mathrm{d}$

